Tracheal occlusions evoke respiratory load compensation and neural activation in anesthetized rats.

نویسندگان

  • Kathryn M Pate
  • Paul W Davenport
چکیده

Airway obstruction in animals leads to compensation and avoidance behavior and elicits respiratory mechanosensation. The pattern of respiratory load compensation and neural activation in response to intrinsic, transient, tracheal occlusions (ITTO) via an inflatable tracheal cuff are unknown. We hypothesized that ITTO would cause increased diaphragm activity, decreased breathing frequency, and activation of neurons within the medullary and pontine respiratory centers without changing airway compliance. Obstructions were performed for 2-3 breaths followed by a minimum of 15 unobstructed breaths with an inflatable cuff sutured around the trachea in rats. The obstruction procedure was repeated for 10 min. The brains of obstructed and control animals were removed, fixed, sectioned, and stained for c-Fos. Respiratory pattern was measured from esophageal pressure (P(es)) and diaphragm electromyography (EMG(dia)). The obstructed breaths resulted in a prolonged inspiratory and expiratory time, an increase in EMG(dia) amplitude, and a more negative P(es) compared with control breaths. Neurons labeled with c-Fos were found in brain stem and suprapontine nuclei, with a significant increase in c-Fos expression for the occluded experimental group compared with the control groups in the nucleus ambiguus, nucleus of the solitary tract, lateral parabrachial nucleus, and periaqueductal gray matter. The results of this study demonstrate tracheal occlusion-elicited activation of neurons in brain stem respiratory nuclei and neural areas involved in stress responses and defensive behaviors, suggesting that these neurons mediate the load compensation breathing pattern response and may be part of the neural pathway for respiratory mechanosensation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracheal occlusion-evoked respiratory load compensation and inhibitory neurotransmitter expression in rats.

Respiratory load compensation is a sensory-motor reflex generated in the brain stem respiratory neural network. The nucleus of the solitary tract (NTS) is thought to be the primary structure to process the respiratory load-related afferent activity and contribute to the modification of the breathing pattern by sending efferent projections to other structures in the brain stem respiratory neural...

متن کامل

Tracheal Occlusion Conditioning in Conscious Rats Modulates Gene Expression Profile of Medial Thalamus

The thalamus may be the critical brain area involved in sensory gating and the relay of respiratory mechanical information to the cerebral cortex for the conscious awareness of breathing. We hypothesized that respiratory mechanical stimuli in the form of tracheal occlusions would modulate the gene expression profile of the thalamus. Specifically, it was reasoned that conditioning to the respira...

متن کامل

Upper airway afferents are sufficient to evoke the early components of respiratory-related cortical potentials in humans.

Repeated inspiratory occlusions in humans elicit respiratory-related cortical potentials, the respiratory counterpart of somatosensory-evoked potentials. These potentials comprise early components (stimulus detection) and late components (cognitive processing). They are considered as the summation of several afferent activities from various part of the respiratory system. This study assesses th...

متن کامل

Tracheal occlusion modulates the gene expression profile of the medial thalamus in anesthetized rats.

Conscious awareness of breathing requires the activation of higher brain centers and is believed to be a neural gated process. The thalamus could be responsible for the gating of respiratory sensory information to the cortex. It was reasoned that if the thalamus is the neural gate, then tracheal obstructions will modulate the gene expression profile of the thalamus. Anesthetized rats were instr...

متن کامل

Effect of chronic intermittent hypoxia on noradrenergic activation of hypoglossal motoneurons.

In obstructive sleep apnea patients, elevated activity of the lingual muscles during wakefulness protects the upper airway against occlusions. A possibly related form of respiratory neuroplasticity is present in rats exposed to acute and chronic intermittent hypoxia (CIH). Since rats exposed to CIH have increased density of noradrenergic terminals and increased α(1)-adrenoceptor immunoreactivit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 112 3  شماره 

صفحات  -

تاریخ انتشار 2012